

A Train Integrity Solution based on GNSS Double-Difference Approach

A. Neri¹, F. Rispoli², P. Salvatori¹, and A.M. Vegni¹

¹ RADIOLABS, Rome Italy {*alessandro.neri, pietro.salvatori, annamaria.vegni*}@*radiolabs.it*

> ² Ansaldo STS, Genoa Italy, francesco.rispoli@ansaldo-sts.com

ION GNSS+ 2014 - Tampa (FL) - U.S.A.

Roadmap

- Introduction to ERTMS/ETCS
- Train integrity issue
- Proposed solution
- Protection Level evaluation
- Simulation results
- Conclusions

ERTMS/ETCS

ERTMS / ETCS (European Railway Traffic Management System / European Train Control System) is the standard for European railways. There are three levels:

Train Integrity

Issue:

With the term train integrity we mean the ability to determine whether all the carriages are still coupled each others.

<u>Goal:</u>

Define a Virtual Track Circuit to reduce operational cost and increase the line capacity.

Solution:

Use a double difference approach between a couple of GNSS receiver located respectively at the head and at the end of the train. In such a way it is possible to estimate the train length with a little time delay.

Why satellite technology?

Main advantages are:

- Reduction of operational and maintenance cost
- Increasing of line capacity

Market perspective:

- Cost-effective solution to increase safety on low traffic lines
- Increase traffic on high-speed lines

Main challenge:

 Fulfill the SIL-4 requirements in terms of THR (Tolerable Hazard Rate) imposed for railways (*i.e.* THR ≤ 10⁻⁹/h)

Reference architecture

Double Difference approach

$$SD_{i} = \left\| \mathbf{X}_{i}^{Sat} \left[T_{i}^{Sat}(k) \right] - \mathbf{X}^{Track} \left[s_{H} \left(T_{i}^{Rx_{h}}(k) \right) \right] \right\| - \\ + \left\| \mathbf{X}_{i}^{Sat} \left[T_{i}^{Sat}(k) \right] - \mathbf{X}^{Track} \left[s_{E} \left(T_{i}^{Rx_{h}}(k) \right) \right] \right\| = \\ = r_{Rx_{H}}^{i} \left[1 - \left\langle \hat{\mathbf{e}}_{Rx_{H}}^{i}, \hat{\mathbf{e}}_{Rx_{E}}^{i} \right\rangle \right] - \left\langle \mathbf{b}, \hat{\mathbf{e}}_{Rx_{E}}^{i} \right\rangle,$$

$$DD_{R_{x_{H}R_{x_{E}}}}^{ij} = SD_{i} - SD_{j} =$$

$$= r_{R_{x_{H}}}^{i} \left[1 - \left\langle \hat{\mathbf{e}}_{R_{x_{H}}}^{i}, \hat{\mathbf{e}}_{R_{x_{E}}}^{i} \right\rangle \right] - \left\langle \mathbf{b}, \hat{\mathbf{e}}_{R_{x_{E}}}^{i} \right\rangle -$$

$$+ \left[r_{R_{x_{H}}}^{j} \left[1 - \left\langle \hat{\mathbf{e}}_{R_{x_{H}}}^{j}, \hat{\mathbf{e}}_{R_{x_{E}}}^{j} \right\rangle \right] - \left\langle \mathbf{b}, \hat{\mathbf{e}}_{R_{x_{E}}}^{j} \right\rangle \right] =$$

$$= r_{R_{x_{H}}}^{i} \left[1 - \left\langle \hat{\mathbf{e}}_{R_{x_{H}}}^{i}, \hat{\mathbf{e}}_{R_{x_{E}}}^{i} \right\rangle \right] - r_{R_{x_{H}}}^{j} \left[1 - \left\langle \hat{\mathbf{e}}_{R_{x_{H}}}^{j}, \hat{\mathbf{e}}_{R_{x_{E}}}^{j} \right\rangle \right] +$$

$$- \left\langle \mathbf{b}, \hat{\mathbf{e}}_{R_{x_{E}}}^{i} - \hat{\mathbf{e}}_{R_{x_{E}}}^{j} \right\rangle.$$

Mitigation of most of the iono, tropo and clocks errors

Railway Constraint

Simulation tool

Protection Level Evaluation

We can define protection as a statistical over bound of the gap estimation error. In fact

We have to link the train integrity issue with the satellite integrity issue

Performance Assessment

Protection Level for single fault

To have a numerical reference of the protection level let us consider:

$$\sigma_{\overline{dd}_{Max}} = 2$$

$$|\mathbf{g}|_{Max} \leq 1$$

$$B = 50 \ km$$

$$b = 2.5 \ km$$

$$= 50 \ km$$

$$SLOPE = 0.14 \longrightarrow PL \square \ 7m$$

In such a way it is possible to derive the Virtual Circuit Length considering the dynamical model of the train (dynamic coupling junctions)

Simulation results

Results are provided for both a typical passenger train (500 m length travelling at 108 km/h) and a heavy freight one (2500 m length with cruise speed of about 80 km/h)

Train Length estimation error

Scenario with all coupled carriages

Intercarriage gap vs time to alarm

We considered the following scenario:

- The train moves at constant speed
- The train is a rigid block (no dynamic coupling between carriages)
- One of the carriages decouples from the previous one
- The front train section continues its movement after the decoupling as if nothing has been occurred
- The tail section stops only by action of rolling resistance
- Track slope effect has been neglected

Train Length estimation error

Scenario with one decoupled carriage

Dynamic effect mitigation

Conclusions

- Train Integrity function is key for the introduction of the ERTMS L3 system with GNSS technology
- We focused on the Virtual Track Circuit definition to estimate at the same time the train position and its length by the:
 - computation of Protection Level to evaluate the gap that can be protected by Virtual Track Circuit
 - verification that the theoretical model fulfils the SIL-4 (Safety Integrity Level 4) requirements
- Computer-based simulations have demonstrated the performance in terms of estimation error with different train lengths:
 - 250 m
 - 2500 m
- A median filter approach has been introduced to minimize the outlier number in the distribution by increasing the time to alert

Thank You for your kind allention

