

A MULTI-SENSOR AUTONOMOUS INTEGRITY MONITORING APPROACH FOR RAILWAY AND DRIVER-LESS CARS

PIETRO SALVATORI¹, ALESSANDRO NERI^{1,2}, COSIMO STALLO¹

RADIOLABS, ROME, ITALY

² UNIVERSITY OF ROMA TRE, ROME, ITALY

HORIZ (N 2020

European Global Navigation Satellite Systems Agency

Contents

- Rail & Road Accuracy and Integrity Requirements
- EM Scenario
- Space Diversity based Multipath Detection & Exclusion
- GNSS vs. Odometry based Multipath Detection & Exclusion
- Experimental results
- Conclusions

RAIL - SAFETY CRITICAL Requirements

ERTMS/ETCS

Safety Integrity Level SIL-4

THR <10⁻⁹ [hazard/(h x Train)]

GNSS Functionality	Alert Limit	Accuracy
VB detection VITAL	1 m	25 cm
VB detection NON VITAL	5 m	125 cm
Track discrimination	2 m	50 cm

ERSAT

GGC

ROAD - SAFETY CRITICAL Requirements

HORIZ (N 2020

ELECTRONIC HORIZON

Vehicles and Road users

- Position, speed
- acceleration
- direction (heading)
- Yaw rate

Static obstacles

Position

Infrastructure

 High Accuracy Digital map

From other sources

• traffic

Rad

weather information

Railway EM scenario

• MULTIPATH is a Major Hazard

Yellow: Unconstrained RTK (GPS) Red: IMU+GPS

The EM scenario

ROMA

TRE

HORIZ (N 2020

Enhanced Odometers

Velocity measurement model

HORIZ () N 2020

Radiclabs

GNSS vs. ODOMETER

Difference between GNSS and ODOMETER velocity estimates

HORIZ () N 2020

GNSS vs. ODOMETER

Difference between GNSS and ODOMETER velocity estimates

HORIZ (N 2020

The Track constraint

Virtual Balise

• The location of the train is completely determined by its **MILEAGE** from the terminus station

Track Parametric Equations

 $\mathbf{X}_{Rx} = \mathbf{X}_{Rx}(\mathbf{s})$ \downarrow Train mileage

HORIZ (N 2020

Track Constrained Positioning

$$\Delta \tilde{\boldsymbol{\rho}}_{Rx} = \mathbf{H} \begin{bmatrix} \Delta s \\ c \delta t_{Rx} \end{bmatrix} + \boldsymbol{\varepsilon} \\ \mathbf{E}_{Rx}^{T} \frac{\partial \mathbf{X}_{Rx}}{\partial s} = \mathbf{1}_{N_{Sat}}$$

Virtual Track Concept

Use of Imaging to estimate the lateraL OFFSET

Vehicle Position determined by Its curviinear coordinates based on lane middle line

HORIZ 🕜 N 2020

Space Diversity Multipath Resilience

• Pseudorange Double Difference equations

HORIZ (N 2020

Space Diversity Multipath Resilience

• **DOPPLER** Double Difference equations (negligible rotations)

$$DD_{p,q}f_D \cong DD_{p,q}f_D^{MP} + DD_{p,q}f_D^n$$

Multipath error Thermal noise

• DOPPLER difference Multipath Indicator

HORIZ (N 2020

$$\left[\boldsymbol{\zeta}_{p}^{DOP}\right]_{q} = DD_{p,q}f_{D}$$

RadioLabs

ODOMETRY Based Multipath Resilience

• **DOPPLER – ODOMETER** Difference equations

$$SD_{p,q}f_{D} = SD_{p,q}f_{D}^{ODO} + SD_{p,q}f_{D}^{MP} + SD_{p,q}f_{D}^{n}$$

$$f_{D_{p}}^{ODO} = \frac{f_{C}}{c + \langle \mathbf{v}_{Sat}^{p}, \mathbf{e}_{Rx}^{p} \rangle} \Big[\langle \mathbf{v}_{Sat}^{p}, \mathbf{e}_{Rx}^{p} \rangle + \langle \mathbf{v}_{ODO}, \mathbf{e}_{Rx}^{p} \rangle \Big]$$

• DOPPLER – ODOMETER Multipath Indicator $\left[\zeta_{p}^{ODO}\right]_{q} = SD_{p,q}f_{D} - SD_{p,q}f_{D}^{ODO}$

HORIZ (N 2020

RadioLabs

Multipath Detection and Exclusion

- Multipath detection is performed by thresholding $|\zeta_p|$
- To avoid masking of SIS of weak multipath by SISs with stronger Multipath an the iterative procedure that removes at each iteration the effects produced by those satellites whose signal is already classified as *faulty* is adopted
 - a. Initialize the set $S^{Healthy}$ of healthy satellites to the set of visible satellites with elevation greater than the elevation mask.
 - b. Repeat

HORIZ (N 2020

- for each satellite in $S^{Healthy}$ compute $\left|\zeta_{p}\right|$
- c. Select the satellite with the largest $|\zeta_p|$

$$\hat{p} = Arg\left\{ \underset{p \in S^{Healthy}}{Max} \left[\left| \zeta_{p} \right| \right] \right\}$$

d. If $\left|\zeta_{\hat{p}}\right|$ exceeds a predefined threshold γ_{ζ}

- remove \hat{p} from the healthy set $S^{Healthy}$
- and mark the satellite as *unreliable*.

until $|\zeta_{\hat{p}}| > \gamma_{\zeta}$ and $S^{Healthy}$ is non empty.

Multipath Detection and Exclusion

- Multipath detection is performed by thresholding $|\zeta_p|$
- To avoid masking of SIS of weak multipath by SISs with stronger Multipath an the iterative procedure that removes at each iteration the effects produced by those satellites whose signal is already classified as *faulty* is adopted
 - a. Initialize the set $S^{Healthy}$ of healthy satellites to the set of visible satellites with elevation greater than the elevation mask.
 - b. Repeat

HORIZ (N 2020

- for each satellite in $S^{Healthy}$ compute $\left|\zeta_{p}\right|$
- c. Select the satellite with the largest $|\zeta_p|$

$$\hat{p} = Arg\left\{ \underset{p \in S^{Healthy}}{Max} \left[\left| \zeta_{p} \right| \right] \right\}$$

- d. If $\left|\zeta_{\hat{p}}\right|$ exceeds a predefined threshold γ_{ζ}
 - remove \hat{p} from the healthy set $S^{Healthy}$
 - and mark the satellite as *unreliable*.

until $|\zeta_{\hat{p}}| > \gamma_{\zeta}$ and $S^{Healthy}$ is non empty.

Multipath Detection and Exclusion

- Multipath detection is performed by thresholding $|\zeta_p|$
- To avoid masking of SIS of weak multipath by SISs with stronger Multipath an the iterative procedure that removes at each iteration the effects produced by those satellites whose signal is already classified as *faulty* is adopted
 - a. Initialize the set $S^{Healthy}$ of healthy satellites to the set of visible satellites with elevation greater than the elevation mask.
 - b. Repeat

HORIZ (N 2020

- for each satellite in $S^{Healthy}$ compute $\left|\zeta_{p}\right|$
- c. Select the satellite with the largest $|\zeta_p|$

$$\hat{p} = Arg\left\{ \underset{p \in S^{Healthy}}{Max} \left[\left| \zeta_{p} \right| \right] \right\}$$

d. If $\left|\zeta_{\hat{p}}\right|$ exceeds a predefined threshold γ_{ζ}

- remove \hat{p} from the healthy set $S^{Healthy}$
- and mark the satellite as *unreliable*.

until $|\zeta_{\hat{p}}| > \gamma_{\zeta}$ and $S^{Healthy}$ is non empty.

Multipath in rail environment

- PONTREMOLESE line
- Line length: 120 km
- Physical Balises: about 500
- Track AreaAugmentation Network
 - 3 RIMs equipped with 2 GPS receivers each
- Trains:

HORIZ 🚱 N 2020

- 2 Ale.642 tractions equipped with 2 GPS receivers each
- Track Database based on RTK positioning survey

Multipath in rail environment

- PONTREMOLESE line
- Line length: 120 km
- Physical Balises: about 500
- Track AreaAugmentation Network
 - 3 RIMs equipped with 2 GPS receivers each
- Trains:
 - 2 Ale.642 tractions equipped with 2 GPS receivers each
- Track Database based on RTK positioning survey
- Challenging environment w.r.t. multipath
 - Tunnels
 - Sky occlusions

Results: Doppler Double Diff. (2 Rx)

HORIZ 🚱 N 2020

Results: Odometry based FDE

HORIZ () N 2020

Results: Doppler Double Diff. + Odometry

HORIZ (N 2020

Results

2002 Logic: The two estimates of the train mileage provided by the two receivers are considered to be valid if the magnitude of their difference falls below a threshold

HORIZ (N 2020

Results

2002 Logic: The two estimates of the train mileage provided by the two receivers are considered to be valid if the magnitude of their difference falls below a threshold

2002 Performance

O2O Mileage linear combination

$$\hat{s}_0 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \hat{s}_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \hat{s}_2$$

HORIZ (N 2020

• Then Misleading Information Probability is

$$P_{GSS}^{HMI}(s) = \sum_{i=0}^{h^{(1)}} \sum_{j=0}^{h^{(2)}} \Pr\left\{FD_i^{(1)} = 0, FD_j^{(2)} = 0\right\} P_{MI/s, H_i^{(1)}, H_j^{(2)}}^{GSS} P_{H_i^{(1)}, H_j^{(2)}}^{H_i^{(1)}, H_j^{(2)}} P_{H_i^{(1)}, H_j^{(2)}}^{H_i^{(1)}, H_j^{(2)}} P_{MI/s, H_i^{(1)}, H_j^{(2)}}^{H_i^{(1)}, H_j^{(2)}} = \Pr\left\{\left|s - \hat{s}_0\right| > AL, \left|\hat{s}_2 - \hat{s}_1\right| \le \delta\left|s, H_i^{(1)}, H_j^{(2)}\right|\right\}$$

• Let
$$\mathcal{E}_{1}' = \frac{\mathcal{E}_{1}}{\sigma_{1,i}}$$
 $\mathcal{E}_{2}' = \frac{\mathcal{E}_{2}}{\sigma_{2,j}}$
 $P_{GSS/H_{i}^{(1)},H_{j}^{(2)}}^{MI} = \frac{1}{2} \operatorname{erfc} \left[\frac{AL_{i,j}^{Norm} + \tilde{\mu}_{i,j}^{(1)}}{\sqrt{2}} \right] + \frac{1}{2} \operatorname{erfc} \left[\frac{AL_{i,j}^{Norm} - \tilde{\mu}_{i,j}^{(1)}}{\sqrt{2}} \right]$
 $P_{GSS/H_{i}^{(1)},H_{j}^{(2)}}^{MD} = 1 - \left\{ \frac{1}{2} \operatorname{erfc} \left[\frac{\delta_{i,j}^{Norm} + \tilde{\mu}_{i,j}^{(2)}}{\sqrt{2}} \right] + \frac{1}{2} \operatorname{erfc} \left[\frac{\delta_{i,j}^{Norm} - \tilde{\mu}_{i,j}^{(2)}}{\sqrt{2}} \right] \right\}$

Results: Doppler Double Diff. + Odometry

HORIZ () N 2020

Radiclabs

Conclusions

- **EXPLOITATION** of the two GNSS receivers of independent manufacturer usually deployed to reduce HW/SW Hazards allows to increase location AVAILABILITY even with single constellation
- **GEOREFERENCED KNOWLEDGE** of the railway is not essential when doppler are compared (pseudorange comparison requires a guess of the baseline between the receivers)
- **ODOMETER- GNSS DOPPLER comparison** is an effective means to face Multipath even when just one receiver is available
- **COMPARISON** of the positions provided by two receivers dramatically improves resilience.
- The proposed Multipath Detection & Exclusion is fully **COMPATIBLE** with other means to mitigate multipath.

Thank you for your attention

HORIZ (N 2020

Co-funded by the Horizon 2020 programme of the European Union

We recognize the contribution of the ERSAT-GGC project, which has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 776039

