

Test Campaign on the Roma – Fiumicino highway 11 – 13 April 2022

Develop Satellite Navigation technologies for an eco-friendly, smart and innovative transport sector that makes the most of digitalisation and automation

Target applications

- Connected & driverless CARS
- **Train management & automation**
- **Drones** for surveillance roads and railways.

Horizon 2020 European Union Funding or Research & Innovation

Horizon 2020

European Union Funding for Research & Innovation

Synergy between Train and Connected cars technologies will bring to an

economically-sustainable, safer ecosystem – a priority of the European Green Deal - leveraging on

- osmosis of best-practices from rail to automotive
- car market potential for a wide spread of GNSS in the transport

Airline passenger | 0.06

0.1

ailway passengers

Management (WP1)

HELMET deliverables

WP No	Del Rel. No	Title	Dissemination Level	Del. Date
WP1	D1.1	Project and Risk Management Plan	Confidential	01 Jul 2022
WP1	D1.2	Data Management Plan	Confidential	01 Jul 2020
WP1	D1.3	ORDP	Confidential	01 Jul 2020
WP2	D2.1	User Requirement Specifications	Public	01 Apr 2020
WP2	D2.2	HELMET CONOPs	Public	01 May 2020
WP2	D2.3	System Requirement Specifications (with traceability matrix)	Public	01 Jun 2020
WP3	D3.1	High level design document	Public	01 Sep 2020
WP3	D3.2	Functional Architecture Design Document	Public	01 Oct 2020
WP3	D3.3	Detailed Design Document	Confidential	01 Jan 2021
WP3	D3.4	Test Plan	Public	01 Jan 2021
WP3	D3.5	Development Plan	Confidential	01 Jan 2021
WP4	D4.1	Development Report	Confidential	01 Oct 2021
WP4	D4.2	Test Procedures	Public	01 Oct 2021
WP4	D4.3	Laboratory test report (with verification matrix)	Public	01 Jan 2022
WP5	D5.1	Proof of Concept Test Report (with verification matrix)	Public	01 Jun 2022
WP5	D5.2	Validation Report	Public	01 Jun 2022
WP6	D6.1	Business Plan Update	Confidential	01 Jul 2022
WP6	D6.2	Innovation Plan	Confidential	01 Jul 2022
WP6	D6.3	Roadmap for the exploitation	Public	01 Jul 2022
WP6	D6.4	Roadmap for the standardization and certification in land transportation	Public	01 Jul 2022
WP7	D7.1	Dissemination and Communication Plan	Confidential	01 Apr 2020
WP7	D7.2	Dissemination and Communication activities	Public	01 Jul 2022
WP8	D8.1	POPD - Requirement No. 1	Confidential	01 Apr 2020
WP8	D8.2	EPQ - Requirement No. 3	Confidential	01 Apr 2021

Multidisciplinary team including research centres and industrial partners

HELMET pillars and ambition

HELMET

- Leverage of expertise, experience and cutting-edge technologies available in state-of-the art for designing high integrity and high accuracy multimodal AIMN for land transportation and UAV
- Design of high integrity and high accuracy multisensor algorithms based on COTS devices
- Contribution to draw an advanced roadmap for exploitation and future commercialisation of EGNSS solutions for land transportations;
- Contribution to the GNSS certification and authorization process into the ETCS/ERTMS and connected and semi-autonomous sectors
- > Working collaboration methodology Industry 4.0

Multi-modal architecture

Achievements and future prospects

- MULTI-MODAL AUGMENTATION PLATFORM for Rail, Roads and Drones
- **SAFETY** framework for **ROAD** vehicles harmonized with avionics and rail best practices
- MULTISENSOR On Board Unit with advanced Integrity Monitoring Capabilities
- TIGHTER INTEGRITY BOUNDS incorporating (Statistical) Knowledge about Local Hazards
- Contribution to the standardization working-group RTCM SC 134

Identified early adopters in Italy

Smart Road - ANAS

Validation & Cerification process underday on the Novara-Rho line

ERSAT - RFI

HELMET Platform

Monitoring Network (AIMN)

• Integrity

Tier-1

External

Reference

Stations

4

9

9

RTCM3

ftp RINEX files

• Tropospheric corrections

RIMS Raw

Data NTRIP/RTCM

IGS

GSC

Precise

Ephemeris

Clock

Corrections

Users

NMEA GGS

Sensors data

Augmentation & Reference Station

Gateway

Server

RTCM

Stream

Protocol: NTRIP

Data Format: RTCM

GRDNet

Backend

SIS & RS

FDE

Augmentation

Messages Calculation

and Formatting

GRDNet

Frontend

Automotive MOBU

- HW On-Bord-Unit
- Integrity algorithms
- Computer Vision algorithms

Rail

- Simulator for train and sensor data
- Integrity algorithms

WP5 objectives

- \succ to perform system testing of the HELMET integrated platform;
- to carry out the final validation of the HELMET platform through an independent assessor

WP5 tasks

- test execution; \geq
- test analysis;
- testing reporting; \succ

Field test campaign activities

- Equipment and set up of vehicles for field tests
- Field Pre-test activities and data collection
- Joint demo on the A90 Rome-Fiumicino Highway

HELMET DEMO – ROME 11-13 APRIL 2022

DEMO APPROACH FOR RAIL

Behavior of the train simulated by the vehicle with Track-constrained PVT calculation

TrackDB based on real data (first field test campain on Rome-Fiumicino highway) and augmentation information from commercial service (RTK).

Rome-Fiumicino A91 highway (Test track)

Scheduling of activities

- First acquisition campaign for trackDB creation (April 7)
- Second acquisition campaign for post processing analysis on the PVT calculated by the OBU (April 12)
- Field test campaign for real-time processing of GNSS data + Sogei augmentation (April 12)

During the tests, environmental data from on-board cameras were collected for in-depth post processing analysis.

TEST EQUIPMENT

Field test equipment: GNSS receiver + cameras (GoPro). **Post Processing analysis:** HxGN SmartNet augmentation data + RTKLib for trackDB generation.

Second acquisition campaign for post processing analysis on the PVT calculated by the OBU

Field test equipment: GNSS receiver + cameras (GoPro + 360°).

Field test campaign for real-time processing of **GNSS** data + Sogei augmentation

Field test equipment: GNSS receiver (GPS, GALILEO) + cameras (GoPro + 360°) + Sogei augmentation network.

JOINT DEMO

(RADIOLABS – ROBOAUTO/DLR)

Automotive MOBU

Start/End Race - RomaTre University Parking

A91: Rome-Fiumicino highway

➢ Project Coordinator:

- Alessandro Neri
- Alessandro.neri@radiolabs.it

➢Visit us on HELMET website:

https://www.helmet-project.eu/

