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ERTMS/ETCS

ERTMS / ETCS (European Railway Traffic Management System / European Train Control
System) is the standard for European railways. There are three levels:
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Train Integrity

Issue:

With the term train integrity we mean the ability to determine whether all
the carriages are still coupled each others.
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Define a Virtual Track Circuit i
to reduce operational cost s
and increase the line capacity.
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Solution:

Use a double difference approach between a couple of GNSS receiver
located respectively at the head and at the end of the train. In such a way
it is possible to estimate the train length with a little time delay.
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Why satellite technology?

Main advantages are:

* Reduction of operational and maintenance cost
* Increasing of line capacity

Market perspective:

* Cost-effective solution to increase safety on low traffic lines
* Increase traffic on high-speed lines

Main challenge:

 Fulfill the SIL-4 requirements in terms of THR (Tolerable Hazard Rate)
imposed for railways (i.e. THR < 102/h)
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Reference architecture
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Double Difference approach
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Railway Constraint

We adopt a constrained positioning
algorithm to map the 3-D estimation
problem into a 1-D estimation problem
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Simulation tool
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Protection Level Evaluation

We can define protection as a Nominal p-th
statistical over bound of the gap Satellite
estimation error. In fact

decoupled
True p-th
n > satellite
location
<
coupled

We have to link the train
integrity issue with the

satellite integrity issue RX.
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Performance Assessment
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Protection Level for single fault

To have a numerical reference of the protection level let us consider:
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Simulation results

Results are provided for both a typical passenger train (500 m length
travelling at 108 km/h) and a heavy freight one (2500 m length with cruise
speed of about 80 km/h)
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Train Length estimation error

Scenario with all coupled carriages

Probability Density Function plot: ¢case GF+RM, Train length L=500m
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0.998
0947

0.99
0.98

0.95
0.90

0.7s

0.50

0.25

010
0.0%
0.02
0.o1
0.003
o.om

i | i i |
K -2 -1 [ 1 2
Milsage between receivers estimation error ]

el

Mormal Probability Plot: case GF+RN, Train length L=2500 m

4

.

0.929
0.997

0.99
0.95 1

nosf-:
0.90

0.75
0.50

0.25

010
0.08
0.02
0.01 1
0.003
0.001

3 -2 -1 a 1 2 3 4
Mileage between receivers estimation errar [m]



Intercarriage gap vs time to alarm

We considered the following scenario: > [ Estimated mieage between receivers|
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Train Length estimation error

Scenario with one decoupled carriage
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Dynamic effect mitigation
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We use a median filter with window size
equal to 10 epochs. In this way we reduce
the outlier number in the error distribution
by increasing the time to alert
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Conclusions

A

Train Integrity function is key for the introduction of the ERTMS L3
system with GNSS technology

We focused on the Virtual Track Circuit definition to estimate at the
same time the train position and its length by the:

— computation of Protection Level to evaluate the gap that can be
protected by Virtual Track Circuit

— verification that the theoretical model fulfils the SIL-4 (Safety Integrity
Level 4) requirements

Computer-based simulations have demonstrated the performance
in terms of estimation error with different train lengths:

— 250 m

— 2500 m

A median filter approach has been introduced to minimize the
outlier number in the distribution by increasing the time to alert
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