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ERTMS/ETCS
ERTMS / ETCS (European Railway Traffic Management System / European Train Control

System) is the standard for European railways. There are three levels:
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Train Integrity
Issue:

With the term train integrity we mean the ability to determine whether all
the carriages are still coupled each others.

Goal:

Define a Virtual Track Circuit
to reduce operational cost
and increase the line capacity.

Solution:

Use a double difference approach between a couple of GNSS receiver
located respectively at the head and at the end of the train. In such a way
it is possible to estimate the train length with a little time delay.
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Why satellite technology?
Main advantages are:

• Reduction of operational and maintenance cost

• Increasing of line capacity

Market perspective:

• Cost-effective solution to increase safety on low traffic lines
• Increase traffic on high-speed lines

Main challenge:

• Fulfill the SIL-4 requirements in terms of THR (Tolerable Hazard Rate) 
imposed for railways (i.e. THR ≤ 10-9/h)
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Reference architecture
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Double Difference approach
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Railway Constraint
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Simulation tool
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Protection Level Evaluation
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Performance Assessment
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Protection Level for single fault
To have a numerical reference of the protection level let us consider:
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Simulation results

Train weight 1275 ×103 kg

Carriage weight 35 t

Locomotive weight 120 t

fR 0.02

FR 24.9×104 N

Receiver noise model N (0.1,0.8)

Results are provided for both a typical passenger train (500 m length
travelling at 108 km/h) and a heavy freight one (2500 m length with cruise
speed of about 80 km/h)
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Train Length estimation error 

Short Train

Long Train

Scenario with all coupled carriages
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Intercarriage gap vs time to alarm
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We considered the following scenario:

• The train moves at constant speed
• The train is a rigid block (no dynamic

coupling between carriages)
• One of the carriages decouples from the

previous one
• The front train section continues its

movement after the decoupling as if
nothing has been occurred

• The tail section stops only by action of
rolling resistance

• Track slope effect has been neglected
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Train Length estimation error 

Short Train

Long Train

Scenario with one decoupled carriage
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Dynamic effect mitigation
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We use a median filter with window size
equal to 10 epochs. In this way we reduce
the outlier number in the error distribution
by increasing the time to alert
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Conclusions 
• Train Integrity function is key for the introduction of the ERTMS L3 

system with GNSS technology

• We focused on the Virtual Track Circuit definition to estimate at the 
same time the train position and its length by the:
– computation of  Protection Level  to evaluate the gap that can be 

protected by Virtual Track Circuit

– verification  that the theoretical model fulfils the SIL-4 (Safety Integrity 
Level 4) requirements

• Computer-based simulations have demonstrated the performance 
in terms of estimation error with different train lengths:
– 250 m 

– 2500 m

• A median filter approach has been introduced to minimize the 
outlier number in the distribution by increasing the time to alert
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Thank You for your kind attention


