

ERTMS on SATELLITE – Enabling Application Validation

Alessandro Neri¹, Gianluigi Fontana², Salvatore Sabina², Francesco Rispoli², Roberto Capua ³, Giorgia Olivieri³, Fabio Fritella³, **Andrea Coluccia**¹, Veronica Palma¹, Cosimo Stallo¹, Alessia Vennarini¹

¹ RADIOLABS, Rome Italy
 ² Ansaldo STS Genoa Italy
 ³ SOGEI S.p.A., Italy

Ansaldo STS A Hitachi Group Compan

ERSAT – EAV

Contents

- Introduction
- ERSAT-EAV architecture
- Sardinia test bed description
- Experiment description
- Experimental results
- Conclusions

Introduction

ERSAT - EAVIntroduction

ertins

Determination of train location in GNSS-based ERTMS/ETCS level 2

Introduction

Determination of train location in GNSS-based ERTMS/ETCS level 2

Functionality: TRACK DISCRIMATION

Requirements:

• Accuracy required = a few decimeters

Interaxis between two adjacent track = 3 m

• Tolerable Hazard Rate (THR) = 10⁻⁹ during hour of operation to be compliant at safety Integrity Level 4 (SIL-4) defined in CENELEC Norms

GNSS-based LDS: Global hazard mitigation is necessary

Ephemeris errors Satellite clock runs-offs Ionospheric storms Tropospheric anomalous

Introduction

ERSAT-EAV project objective ...

To verify the suitability of GNSS as the <u>enabler of cost-efficient</u> and economically sustainable ERTMS signaling solutions for safety railway applications.

ERSAT-EAV solution exploits ...

the advantages of the multi-constellation approach and of EGNOS and Galileo services, providing an optimized augmentation service to the trains, in order to meet the severe railway requirements on safety.

The objective of this work ...

to test the ERSAT-EAV multiconstellation capability

$\mathsf{ERSAT} - \mathsf{EAV}$

Architecture

- 1st tier: Wide Area
 Differential Corrections and
 RIMS raw data trough
 dedicated link (EGNOS in
 EU, WAAS in U.S.A.)
- 2nd tier: Track Areas
 Augmentation Network
 (TAAN) based on (low cost)
 COTS components

Architecture - 1st Tier

The EGNOS services are a input for the 2nd tier.

Exist two kind of EGNOS services:

- 1. SoL (Safety of Life) EGNOS SIS
- 2. EDAS (EGNOS Data Access Service)

The **SoL EGNOS signal** broadcasts the following information:

• GNSS satellite status;

A Hitachi Group Compa

Ansaldo STS

- Precise GNSS satellite ephemeris and clock corrections;
- Ionospheric corrections (*Grid Ionospheric Vertical Error* GIVE).

Architecture - 1st Tier

The **EDAS** is the terrestrial EGNOS data service the following information:

- GNSS raw data;
- The EGNOS augmentation messages;
- Differential GNSS (DGNSS) and RTK (Real-Time Kinematic) messages.

Table 1 EDAS services data in Real Time (Service Level 0, Service Level 2), SISNeT (Signal in Space through the Internet), NTRIP (Networked Transport of RTCM via Internet Protocol)) and Archive (FTP (File Transfer Protocol)).

Mode	EDAS Service	Type of Data						
		Observation & navigation	EGNOS messages	RTK corrections	DGNSS corrections	Transmission Protocol	Formats	
	Service Level 0	Х	Х			EDAS	ASN.1	
Real	Service Level 2	Х	Х			EDAS	RTCM 3.1	
Time	SISNeT		х			SISNET	RTCA DO-229D	
	NTRIP	Х		Х	Х	NTRIP v2.0	RTCM 2.1, 2.3, 3.1	
Archive	FTP	x	x			FTP	RINEX 2.11, RINEX B 2.10, EMS, IONEX, SL0 and SL2	

Table 2 EDAS services availability commitment

	Service	Service	SISNeT	Ntrip	Data	FTP
	Level 0	Level 2			Filtering	
EDAS Services	98.5%	98.5%	98%	98%	98%	98%
Availability						

Table 3 EDAS services latency commitment

	Service	Service	SISNeT	Ntrip	Data Filtering		FTP
	Level 0	Level 2			Service	Service	
					Level 0	Level 2	
EDAS	1.3	1.450	1.150	1.75	1.6	1.75	N/A
Services	second	seconds	seconds	seconds	seconds	seconds	
Latency	S						

TAAN – Local Integrity Function (LIF)

The LIF of the TAAN-CC implements a Fault Detection and Exclusion algorithm

Two level of integrity check:

- 1. Preliminary Integrity Check
- 2. Multiple Reference Receivers Integrity Check

cer

- Single satellite faults
- Constellation faults

A Hitachi Group Compa

• RIM faults

Ansaldo STS

Architecture – GNSS Based LDS OBU

Each GNSS-Based LDS OBU is defined by:

- 1. Two GNSS receivers;
- 2. Digital trackmap database;
- 3. A local processor performing:
 - Signal-In-Space Receviver and decode
 - GNSS Measurement Consistency Check
 - Satellites Selection for PVT Estmation
 - PVT estimation
 - ARAIM (Advanced Reciver Autonomous Integrity Monitoring)

DB NETZE

cell

OVIARIA ITALIAN

Radiceabs

ESSP

soge

Telespazio

Architecture – GNSS Based LDS OBU

The Fisher's information of the train mileage is

$$J_{s} = \frac{1}{\sigma_{\rho}^{2}} \cos^{2} \alpha \cos^{2} \lambda$$
(1)
$$\sigma_{\Delta s}^{2} = \frac{c^{2}}{4\pi^{2} \overline{f^{2}}} \frac{\sum_{i=1}^{N_{sat}} SNR_{i}}{\sum_{i=1}^{N_{sat}} SNR_{i} \sum_{i=1}^{N_{sat}} SNR_{i} \cos^{2} \alpha_{i} \cos^{2} \lambda_{i} - \left[\sum_{i=1}^{N_{sat}} \cos \alpha_{i} \cos \lambda_{i} SNR_{i}\right]^{2}$$
(2)

Figure 4. Fisher's information for Train mileage estimation geometry

The Fisher's information for track discrimination is

$$J_s = \frac{1}{\sigma_o^2} \cos^2 \beta \cos^2 \lambda \tag{3}$$

where $\beta = \frac{\pi}{2} - \alpha$

Figure 5. Fisher's information for track discrimination geometry

Architecture – GNSS Based LDS OBU

PVT Combination module

Combined $_Est = \lambda_1 * D_{est_1} + \lambda_2 * D_{est_2}$

Combined $_Train _Speed = \lambda_1 * Speed _1 + \lambda_2 * Speed _2$

where

 D_{est_1} , zero train mileage estimate based on Rx₁ pseudoranges D_{est_2} , zero train mileage estimate based on Rx₂ pseudoranges $Speed_1$, Velocity Estimate by Rx1 $Speed_2$, Velocity Estimate by Rx2

 $\lambda_2 = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$, with σ_1 the standard deviation of Estimate by Rx1 and σ_2 the standard deviation of Estimate by Rx2

Ansaldo STS A Hitachi Group Comp

ERSAT - EAVSARDINIA TEST BED

The SARDINIA testbed for the ERSAT-EAV Project

- ✓ ROUTE
 - Cagliari San Gavino (about 50 Km) (owned by the Rete Ferroviaria Italiana
- ✓ 1st Tier
 - EGNOS (owned by the European Union)
- \checkmark 2nd Tier:

Ansaldo STS A Hitachi Group Company

- Private Local Area Augmentation Network (owned by the Ansaldo **STS**
- Public Local Area Augmentation Network (owned by the SOGEI)
- ✓ TALS located in Radio Block Center (RBC) (owned by the Ansaldo STS)
- European Vital Control (EVC) + GNSS-Based Location Determination System On-Board Unit (LDS-OBU) (owned by the Ansaldo STS)

celt

✓ Telecommunication Network (EVC < == > RBC) : Public Switching and Satellite Network

ERSAT – EAV SARDINIA TEST BED

TALS Processed GNSS data to LDS Gateway RBC SAT. EVC LDS PDN MAR MNO2 **Fixed Railway** Network MNO1 Measured GNSS data from BS BS equipped with **GNSS** augmentation Felespazio sogei Radiceabs J TRENITALIA **DB** NETZE ceit **ESS** OVIARIA ITALIANA

Radio telecommunication network:

- Public Switching (4G/GPRS)
- Satellite communication

A Hitachi Group Compan

NIVERSIT

Ansaldo STS

ERSAT – EAV EXPERIMENT DESCRIPTION

The experiment only used some subsystem✓ ROUTE

- Cagliari San Gavino Monreale
- ✓ 1st Tier:
 - EGNOS
- ✓ 2nd Tier:
 - Public Local Area Augmentation Network (owned by the SOGEI)
- $\checkmark\,$ TALS (Track Area LDS Server) by RADIOLABS
- ✓ LDS-OBU (Location Determination System-OBU) by RADIOLABS deployed on train ALN.668
- ✓ Telecommunication Network (EVC < == > RBC) : Public Switching and Satellite Network

ERSAT – EAV Sardinia TEST SCENARIOS

Measurements campaign date: October 2016 Total rides: 12

SCENARIO 1

CONSTELLATIONS USED: **GPS** + **GALILEO**

OPERATIONAL CONDITION: Nominal

SCENARIO 2

CONSTELLATION USED: GPS + GALILEO

OPERATIONAL CONDITION: Fault

FAULTS DETAILS

- The satellite faults are injected in Real-Time by TAAN.
- The faults are simulated on GPS PRN 01, PRN 03, PRN 06, PRN 07, PRN 09 and PRN 17 on the 25th of October 2016 from 5:10 pm to 5:17 pm local time

SCENARIO 3

CONSTELLATION USED: GPS

OPERATIONAL CONDITION: Nominal

ERSAT – EAV EXPERIMENTAL RESULTS

SCENARIO 1

ERSAT – EAV EXPERIMENTAL RESULTS

SCENARIO 2

CONSTELLATIONS USED: GPS + GALILEO

OPERATIONAL CONDITION: Fault

FAULTS DETAILS

- The satellite faults are injected in Real-Time by TAAN.
- The faults are simulated on GPS PRN 01, PRN 03, PRN 06, PRN 07, PRN 09 and PRN 17 on the 25th of October 2016 from 5:10 pm to 5:17 pm local time

Ansaldo STS A Hitachi Group Compa

DB NETZE

ERSAT – EAV EXPERIMENTAL RESULTS

SCENARIO 3

DB NETZE

ESSF

ceit

NIVERSIT

ARIA ITALIAN

Radiceabs

soge

Telespazio

TRENITALIA

CONSTELLATIONS USED: GPS

A Hitachi Group Compar

Ansaldo STS

OPERATIONAL CONDITION: Nominal

ERSAT – EAV CONCLUSIONS

□ Multi-layer approach to the design and implementation of an augmentation network supporting railway applications has been verified in a real operational environment

- □ Additional tests will be carried out with the Galileo constellation entering into pre-operational service
- □ Results will be contributing to the ERTMS roadmap for adopting the GNSS

