

High Integrity Location and Navigation Services for Connected and Autonomous Driving

Alessandro NERI^{1,2}

¹University of ROMA TRE, ²RadioLabs neri@uniroma3.it

ROAD - SAFETY CRITICAL Requirements

ROAD - SAFETY CRITICAL Requirements

All Weather Conds. Safe Driving requires

HIGH ACCURACY

INTEGRITY CONCEPT

ROAD - SAFETY CRITICAL Requirements

KPI	Value
Lateral SAFETY LIMIT	< 25 cm
Longitudinal SAFETY LIMIT	2 m
Speed accuracy	?

The **INTEGRITY** specifies the **PROBABILITY** that the true position will fall outside the safety box and no timely warning is given.

SAFETY BOX: defines the largest position error such that the vehicle can still be safely used

INTEGRITY CONCEPT

Radicitabs

The Urban EM scenario

3GPP UE positioning methods

- **NG-RAN** Standard positioning methods:
 - A-GNSS network-assisted GNSS methods;
 - **OTDOA** observed time difference of arrival positioning;
 - E-CID enhanced cell ID methods;
 - **BAROMETRIC** pressure sensor positioning;
 - WLAN positioning;
 - **BLUETOOTH** positioning;
 - **TBS** terrestrial beacon system positioning.
- Hybrid positioning using multiple methods is also supported.
- Standalone mode (e.g. autonomous, without network assistance) using one or more methods is also supported.

Observed Time Difference Of Arrival

As in GNSS, several Transmission Points (TP) simultaneously transmit Orthogonal RF Positioning Reference Signals (PRS)

STRENGTH

- Same principle as GNSS Relative Positioning
- Accuracy increases with Bandwidth

WEAKNESS

- **Synchronization**
- Coverage
- Multipath

HIGH INTEGRITY 5G POSITIONING

- Adoption of a Local Augmentation and Integrity Monitoring Network •
- Receiver Autonomous Integrity Monitoring Algorithm (**OBU**)

Observed Time Difference Of Arrival

- Reference Stations monitoring the Positioning Reference
 Signals have to be included in the architecture
- Architectural shift from From **Network Centric** to **Vehicle Centric** positionig to guarantee the **Low Latency** required by Vehicle Control.
- **Unified** Augmentation and Integrity Monitoring Infrastructure with site sharing
- **STANDARDIZATION EFFORT** required to include both GNSS and 5G data in the Augmentation messages

RTCM SC 134 - Integrity for High Accuracy GNSS-based Applications

Observed Time Difference Of Arrival

- Reference Stations monitoring the Positioning Reference
 Signals have to be included in the architecture
- Architectural shift from From Network Centric to Vehicle Centric positionig to guarantee the Low Latency required by Vehicle Control.
- **Unified** Augmentation and Integrity Monitoring Infrastructure with site sharing
- **STANDARDIZATION EFFORT** required to include both GNSS and 5G data in the Augmentation messages

RTCM SC 134 - Integrity for High Accuracy GNSS-based Applications

Radiclabs

In addition to Global Hazards and Local Hazards like **Multipath** and **RF unintentional interference**, Hazards caused by **JAMMERS and CYBER-ATTACKS (Spoofing and Meaconing)** have to be accounted for.

The EMERGE Ecosystem

Radialabs

emergency situations, improvement of driving comfort

CONCLUSIONS

Exploitation of GALILEO SIS and 5G Signal characteristics can boost High Accuracy Location Services

- **Similar requirements** in terms of position accuracy and integrity for Rail and Automotive
- High safety level achieved by the Rail Transport Systems (ERTMS)
- MASS MARKET production capability of the Automotive Industry

- **SHARING** of technological and methodological effort (including **testing**, **validation**, and **certification**)
- **SHARING** of a unified **multimodal** Overlay Network for Location Services for Rail and Automotive based on GALILEO and 5G

Thank you for your attention

